Posted on

soil weed seed bank

Soil weed seed bank

To use the stale seed bed most effectively, start several weeks before planting. An initial cultivation kills any emerged weeds that have overwintered. It also brings weed seeds to the surface where exposure to light and oxygen stimulate germination. Depending on the weather and types of seeds present in the soil, weeds may sprout up overnight or over a few weeks. When weeds have germinated and are still small and young, they are easy to kill with a second light cultivation. This process is then repeated as needed and as time allows. As few as three cycles of light/ shallow tillage can reduce the number of subsequent weeds noticeably. For fields and gardens with very heavy weed infestations more cycles of repeated tillage over a few years will be needed. Using a stale seed bed may push back your planting date; but in the absence of weed competition, the crop will have more access to water and sunlight and be able to make up for lost time.

Weed control can be handled with short-term or long-term approaches. Short-term management focuses on controlling weeds during the first part of crop growth when weeds are more likely to affect crop yields. Long-term weed management, however, works all season-long to deplete weed seeds from the seedbank (the reservoir of viable weed seeds in the soil). Whichever approach you take, using a stale seed bed is a great cultural weed control technique.

Keys to Success

Ah spring! The war against weeds begins anew. The first major skirmish of the growing season should happen before planting. The stale seed bed technique is an often over-looked practice that can be used before planting. It works by first encouraging weeds to sprout and then killing them when they are young and most vulnerable. For organic growers, a stale seed bed can replace the effects of a pre-emergence herbicide. And when used properly, it can contribute to both short-term and long-term weed management.

Stale Seedbed is most effective when it’s part of a zero weed threshold system.

Figure 1. Fate of seeds during the four years following burial in the upper two inches of soil. Two thousand seeds of each species were buried in the fall of 1994. The area in white represents the number of intact seeds present in the fall of each year, green represents the total number of seeds that produced seedlings during the four years, and the blue represents the total number of seeds lost. Buhler and Hartzler, 1999, USDA/ARS and ISU, Ames, IA.

Seeds of the two grass species were shorter lived than those of velvetleaf or waterhemp. At the end of the third year (1997) no grass seeds were recovered. Somewhat surprising is that waterhemp seed was more persistent than velvetleaf in this study. Velvetleaf has long been used as the example of a weed with long-lived seeds. In the fourth year of the study four times more waterhemp seedlings than velvetleaf emerged and four times more waterhemp seed than velvetleaf seed (240 vs 60) remained in the seed bank.

Results: The emergence patterns of the four species were described in an earlier article (see emergence patterns). The fate of the seeds (emergence, loss or survival in soil) during the first four years after burial is shown in Figure 1. In the first year following burial waterhemp had the lowest emergence (5%) whereas greatest emergence was seen with woolly cupgrass (40%). Total emergence over the four years ranged from 300 seedlings (15% of seed) for waterhemp to 1020 seedlings (51%) for woolly cupgrass. More than three times as many seedlings emerged in the first year than in subsequent years for velvetleaf, woolly cupgrass and giant foxtail, whereas 140 waterhemp seedlings emerged in 1996 compared to only 100 in 1995.

For all species except woolly cupgrass the majority of seeds were unaccounted for (the blue portion of the graph) in this experiment. Determining the fate of the ‘lost’ seeds is a difficult task. A seed basically is a storage organ of high energy compounds, thus they are a favorite food source of insects and other organisms. In natural settings more than 50% of seeds are consumed by animals. The importance of seed predation in agricultural fields is poorly understood, but recent studies have shown that predation can be a significant source of seed loss. Another important mechanism of seed loss likely is fatal germination. This occurs when a seed initiates germination but the seedling is killed before it becomes established. Fatal germination probably is more important with small-seeded weeds such as waterhemp and lambsquarters than with large-seeded weeds, but is poorly understood. A better understanding of the factors that influence seed losses might allow these processes to be manipulated in order to increase seed losses.

The results indicate that the seed bank of giant foxtail and woolly cupgrass should be able to be depleted much quicker than that of the two broadleaves. Maintaining a high level of weed control for two years should greatly diminish populations of these weeds in future years and simplify weed management. Unfortunately, a single plant escaping control can produce more seed than was introduced to the soil in these experiments, thus the seed bank can be rapidly replenished any time weed control practices fail to provide complete control. Finally, over 50% of velvetleaf and waterhemp seed was lost in the first two years following burial. However, significant numbers of seed of these species remained four years after burial. This will make populations of these two species more stable over time than those of woolly cupgrass and giant foxtail.

Leck, M.A., Parker, V.T. & Simpson, R.L., eds . 1989. Ecology of soil seed banks . Academic Press, New York. 462 pp.



Malone, C.R. 1967. A rapid method for enumeration of viable seeds in soil. Weeds 15: 381-382.

A publication of the Association of Official Seed Analysts (AOSA), Tetrazolium Testing Handbook (Peters, 2000) ( ) provides many excellent species-specific drawings and insights for the proper use of TZ in the commercial seed industry. For weeds, however, exact determination of seed viability is more of a research interest than an economic and industrial requirement. Consequently, some of the highly structured and species-specific AOSA guidelines may be relaxed. The following two paragraphs describe procedures that we have found to be useful for some species common to North America.

Alopecurus myosuroides Huds.

Forcella, F., Buhler, D.D. & McGiffen, M.E. 1994. Pest management and crop residues. pp. 173-189. In Hatfield, J.L. & Stewart, B.A., eds. Crops Residue Management . Lewis Publishers, Ann Arbor, Michigan, USA.